Objective:
- Establish a method to accurately and efficiently determine the heating of a solution of magnetic nanoparticles
- Devise a process that allows for certain nanoparticle magnetic properties to be calculated
- Compare conventional magnetometer data to magnetic induced heating data

Instrumentation:
1. Magnetherm – coil/capacitor produces magnetic field
2. Oscilloscope – shows peak-to-peak voltage of A/C field
3. Function Generator – oscillates magnetic field
4. Power Supply – provides voltage and current to Magnetherm
5. DAQ assistant with thermocouples – reads temperature from sample and sends data to Origin

Results:
Magnetite (Fe₃O₄) nanoparticles

Theoretical Calculation of Magnetic Moment Per Particle
\[V_{nanoparticle} = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi(7.5)^3 = 1767.15 \text{ nm}^3 \]
\[V_{unit cell} = 0.819^3 = 0.5906 \text{ nm}^3 \] (Magnetite Fe₂O₃) \[\frac{32 \mu g}{\text{unit cell}} \]
\[V_{nanoparticle} = 2992.13 \text{ unit cells per particle} \]
\[\mu = 32 \cdot \mu_B \cdot (2992.13) = 3.88 \times 10^{-19} \text{ } \mu_B \]

Conclusions:
- Highly monodisperse magnetite nanoparticles from Ocean Nanotech (diameter = 15 nm) were used in this study
- The magnetic moment per particle in each method was comparable, which proves the validity of the Linear Response Theory for magnetic nanoparticles
- Unprecedented comparison between magnetic induced heating and SQUID
- Magnetic induced heating is an efficient and cost effective alternative to the SQUID for measurements of magnetic moment per particle

Acknowledgement. Work at the Ames Laboratory was supported by the U.S. Department of Energy Office of Science Undergraduate Laboratory Internship (SULI) program under its contract with Iowa State University, Contract No. DE-AC02-07CH11358. Jonathan Goodwill is grateful to the DOE for the assistantship and opportunity to participate in the SULI program. Also, thanks to Tanya Prozorov for the use of the Magnetherm and Surya Mallapragada for support of the magnetic measurements.