Contact Information
Biography
Dr. Lampe received his PhD in Entomology from the University of Illinois at Urbana-Champaign
in 1992. He has a BS in Biology from St. Louis University and an MS in Entomology
from Purdue University; he joined the faculty at Duquesne University in 1998.
Dr. Lampe's laboratory investigates novel ways to halt the spread of insect transmitted
diseases like malaria by creating bacterial strains that express anti-malarial proteins
and peptides. We aim to design bacterial strains suitable for field release in Africa
as part of a multipronged approach to controlling this deadly disease.
Education
- PhD, Entomoogy, University of Illinois at Urbana-Champaign, 1992
- MS, Entomology, Purdue Unicersity, 1987
- BS, Biology, St. Louis University, 1985
Research Interests
I. Symbiotic control of insect-transmitted diseases of plants and animals
Insects are vectors for many of the most deadly plant and animal diseases and are a crucial link in these disease cycles. In the past, cultural methods or insecticide treatments have been used to control insect vectors. These methods are still widely practiced, but in many cases insects have evolved resistance to insecticides. In some areas of the world, notably Africa, public health measures used in developed countries to reduce vector populations are difficult to apply. Clearly, new methods are necessary to aid in the control of insect-vectored diseases.
Symbiotic control is a method that takes advantage of basic microbial ecology. The phenotype of all
plants and animals is the product of genetic and environmental effects. One large
environmental effect is provided by the microorganisms that form various kinds of
sybioses with plants and animals. In symbiotic control, we genetically engineer symbiotic
microbes to deliver effector proteins that can interfere with disease causing organisms.
In this way, we can alter the disease-causing phenotype of insect vectors by modifying
the bacteria that they normally carry.
Blocking mosquito transmission of malaria to humans: We are genetically modifying
two species of bacteria to deliver antimalarial effector proteins. Malaria is the
most widespread and dangerous insect-transmitted human disease in the world. It infects
more than 500 million people (ca. 1 in 14 humans) and causes between 1 and 2 million
deaths each year. The incidence of malaria is increasing and new measures to combat
it are desperately needed.
Both Pantoea agglomerans and Asaia borogensis are bacterial species that are found in the midguts of Anopheles gambiae, the most important malaria vector mosquito in Africa. We are developing secretion systems for use in both of these species in order to secrete anti-malarial effectors into the midgut of An. gambiae. These effector molecules include single chain antibodies that bind directly to the Plasmodium parasites that cause malaria and to receptors on the mosquito midgut epithelium that the parasite uses to invade mosquito tissues. We are also developing ways to control the gene expression of antimalarial effector genes and methods to develop genetically stable strains of bacteria carrying these effectors.
II. Microbial ecology of mosquitoes
A related focus of my lab is uncovering the microbiota of mosquitoes in Pennsylvania with an eye toward expanding our repertoire of microbes suitable for symbiotic control. We are identifying a large number of culturable bacteria found in mosquitoes and also working to uncover the complete gut and ovary microbiomes of several species of Pennsylvania mosquitoes in collaboration with Gina Lamendella at Juniata College and Mike Hutchinson at the PA Dept. of Environmental Protection. Abundant culturable strains are being tested for their ability to colonize different mosquito tissues and for their ability to block the development of malaria parasites in Anopheles.
Profile Information
- BIOL112 Evolution, Ecology, and Diversity
- BIOL340W/540 Evolution
- BIOL417/517 Invertebrate Biology and Biotechnology
- Shane JL, Grogan, CL, Cwalina, C. and Lampe DJ. 2018. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota.Nature Communications 9:4127 | DOI: 10.1038/s41467-018-06580-9
- Bongio NJ, Lampe DJ. 2015. Inhibition of Plasmodium berghei Development in Mosquitoes by Effector Proteins Secreted from Asaia sp. Bacteria Using a Novel Native Secretion Signal. PLoS One. Dec 4;10(12):e0143541. doi:10.1371/journal.pone.0143541.
- Shane JL, Bongio NJ, Favia G, Lampe DJ. 2014. Draft Genome Sequence of Asaia sp. Strain SF2.1, an Important Member of the Microbiome of Anopheles Mosquitoes. Genome Announcements. 2(1). pii: e01202-13. doi: 10.1128/genomeA.01202-13.
- Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. 2012. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the National Academy of Sciences 109(31): 12734-9.
- Azizi A, Arora A, Markiv A, Lampe DJ, Miller TA, Kang AS. 2012. Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies. Appl Environ Microbiol. 78(8):2638-47.
- Bisi DC, Lampe DJ. 2011. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 77(13):4669-75.
- Riehle MA, Moreira CK, Lampe D, Lauzon C, and Jacobs-Lorena, M. 2007. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. International Journal of Parasitology 37: 596-603.
- Miller, T. A., C. R. Lauzon, D. Lampe, R. Durvasula and C. Matthews. 2006. 'Paratransgenesis applied to control insect-transmitted plant pathogens: The Pierce's disease case-. In: Insect Symbiosis 2 K. Bourtzis and T. A. Miller, eds. Taylor and Francis, London/CRC Press Boca Raton, FL
- Miller, Thomas A., David J. Lampe and Carol R. Lauzon. 2006 -Transgenic and paratransgenic insects in crop protection.' In: Insecticide Design Using Advanced Technologies. Isaac Ishaaya, Ralf Nauen and Rami Horowitz, eds. Springer-Verlag, Heidelberg, Germany.
- Bextine B, Lampe D, Lauzon C, Jackson B, Miller TA. 2005. Establishment of a Genetically Marked Insect-Derived Symbiont in Multiple Host Plants. Current Microbiology 50: 1-7.
- Bextine, B.R., Lauzon, C.R., Potter, S.E., Lampe, D. and Miller, T.A. 2004. Delivery of a genetically marked Alcaligenes sp. to the glassy-winged sharpshooter for use in a paratransgenic control strategy. Current. Microbiolology 48: 327-331.
- Lampe, D.J., Walden, K.K.O., Sherwood, J.M., and Robertson, H.M. 2000. "Genetic engineering with mariner transposons". In. Insect Transgenesis: Methods and Applications, A. Handler and D. O'Brochta, eds. CRC Press.
- Rubin, E.J., Akerley, B.J., Lampe, D.J., Husson, R.N., and Mekalanos, J.J. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proceedings of the National Academy of Sciences 96: 1645-1650.
Mariner transposable elements
- Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. 2013. Functional characterization of the human mariner transposon Hsmar2. PLoS One. 11;8(9):e73227. doi: 10.1371/journal.pone.0073227.
- Lampe, D.J. 2010. Bacterial genetic methods to explore the biology of mariner transposons. Genetica, 138(5):499-508.
- Keravala, A. , Liu, D., Lechman, E.R., Wolfe, D., Nash, J., Lampe, D.J., and Robbins, P.D. 2006. Hyperactive Himar1 Transposase Mediates Transposition In Cell Culture And Enhances Gene Expression In Vivo. Human Gene Therapy 17: 1006-1018.
- Butler, M.G., Chakraborty, S., and Lampe, D.J. 2006. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica, 127(1-3):351-66.
- Barry, E. G., Witherspoon, D.J., and Lampe, D.J. 2004. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 166: 823-833.
- Lipkow K., Buisine N., Lampe D.J., Chalmers R. 2004. Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Molecular and Celular Biology 24: 8301-8311.
- Lampe D.J., Witherspoon D.J., Soto-Adames F.N., Robertson H.M. 2003 Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Molecular Biology and Evolution 20:554-62
- Akerley, B.J. and Lampe, D.J. 2002. The GAMBIT system for analysis of virulence and essential genes. Methods in Enzymology 358:100-8.
- Lampe, D. J., K. K. O. Walden and H. M. Robertson 2001. Loss of transposase-DNA interaction may underlie the divergence of mariner-family transposable elements and the ability of more than one mariner to occupy the same genome. Molecular Biology and Evolution 18: 954-961.
- Hamer, L., Woessner, J., Montenegro-Chamorro, M.V., Adachi, K., Tarpey, R.W., Lampe, D.J., Slater, T., Ramamurthy, L., and Hamer, J.E. 2001. Gene discovery and gene function assignment in filamentous fungi. Proceedings of the National Academy of Sciences 98:5110-5115.
- Pelicic, V., Morelle, S., Lampe, D., Nassif, X. 2000. Mutagenesis of Neisseria meningitidis by in vitro transposition of Himar1 mariner. Journal of Bacteriology 182:5391-8.
- Zhang, J.K., Pritchett, M.A., Lampe, D.J., Robertson, H.M., Metcalf, W.W. 2000. In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proceedings of the National Academy of Sciences 97:9665-70.
- Lampe, D. J., Akerley, B.J., Rubin, E. J., Mekalanos, J.J., and Robertson, H.M. 1999 Hyperactive mutants of Himar1 mariner transposase. Proceedings of the National Academy of Sciences 96:11428-11433.
- Zhang, L., Sankar, U., Lampe, D.J., Robertson, H.M., and Graham, F.L.. 1998. The Himar1 mariner transposase encoded by a recombinant Ad vector is functional in mammalian cells. Nucleic Acids Research, 26: 3687-3693.
- Akerley, B.J., Rubin, E.J., Camilli, A., Lampe, D.J., Robertson, H.M., and Mekalanos, J.J. 1998. Systematic identification of essential genes by in vitro Himar1 mariner mutagenesis. Proceedings of the National Academy of Sciences 95: 8927-8932.
- Lampe, D.J., Grant, T.E., and Robertson, H.M. 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro, Genetics 149: 179-187.
- Lampe, D.J., Churchill, M.E.A., and Robertson, H.M. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. European Molecular Biology Journal 15: 5470-5479.
Other interests - Lampe DJ, Stolz JF. 2015. Current perspectives on unconventional shale gas extraction in the Appalachian Basin. J Environ Sci Health A Tox Hazard Subst Environ Eng. 50(5):434-46. doi: 10.1080/10934529.2015.992653.
- Lampe, DJ. 2012. Environmental Impacts of Horizontal Gas Well Drilling and Hydrological Fracturing. Journal of Appalachian Studies 18: 34-38.