Contact Information

Biography

With an ever-growing population and corresponding increase in demand for energy and natural resources, there is an immediate need for sustainable industrial processes that generate less waste, and leave a smaller carbon footprint. Catalysis in industry accounts for a significant percentage of the annual US GDP, but relies heavily on the noble metals. Due to the expense and relative shortage of these elements, there is a growing effort to identify novel catalysts that rely on earth-abundant elements, such as those from the s- and p-block. The primary goal of the Lummis research group will be to investigate the fundamental aspects of the reactions of main-group compounds, clusters and abundant metal hydrides with small molecules such as nitrogen, hydrogen, methane, ammonia, ethylene, CO and alkenes that are either consumed or produced by energy production processes. We will aim to target inexpensive and non-toxic elements for these transformations.

Education

  • Ph.D. Chemistry, University of Alberta
  • Postdoctoral Research Associate, Queen's University
  • Postdoctoral Research Associate, University of California Davis

Research Interests

  • Inorganic chemistry
  • Catalysis
  • Main-group chemistry

Profile Information

About

  1. Lane, A. M.; Luong, N. T. C.; Kelly, J. C.; Neal, M. J.; Jamrom, J.; Bloomfield, A. J.; Lummis, P. A.; Montgomery, T. D.; Chase, D. T. Synthetic Exploration of Bis(phenolate) Aza-BODIPYs and Heavier Group 13 Chelates. Molecules 2022, 27 (23). 
  2. Lummis, P. A.; Osten, K. M.; Levchenko, T. I.; Sabooni Asre Hazer, M.; Malola, S.; Owens-Baird, B.; Veinot, A. J.; Albright, E. L.; Schatte, G.; Takano, S.; Kovnir, K.; Stamplecoskie, K. G.; Tsukuda, T.; Häkkinen, H.; Nambo, M.; Crudden, C. M. NHC-Stabilized Au10 Nanoclusters and Their Conversion to Au25 Nanoclusters. JACS Au 2022, 2 (4), 875–885.
  3. Veinot, A. J.; Griffiths, M. B. E.; Singh, I.; Zurakowski, J. A.; Lummis, P. A.; Barry, S. T.; Crudden, C. M. Evaluating the Thermal Behaviour of Benzimidazolylidene Sources for Thin-Film Applications. Mater. Adv. 2022, 3 (16), 6446–6450.
  4. Hupf, E.; Kaiser, F.; Lummis, P. A.; Roy, M. M. D.; McDonald, R.; Ferguson, M. J.; Kühn, F. E.; Rivard, E. Linking Low-Coordinate Ge(II) Centers via Bridging Anionic N-Heterocyclic Olefin Ligands. Inorg. Chem. 2020, 59 (3), 1592–1601.
  5. Veinot, A. J.; Al-Rashed, A.; Padmos, J. D.; Singh, I.; Lee, D. S.; Narouz, M. R.; Lummis, P. A.; Baddeley, C. J.; Crudden, C. M.; Horton, J. H. N-Heterocyclic Carbenes Reduce and Functionalize Copper Oxide Surfaces in One Pot. Chem. Eur. J. 2020, 26 (50), 11431–11434.
  6. Salorinne, K.; Man, R. W. Y.; Lummis, P. A.; Hazer, M. S. A.; Malola, S.; Yim, J. C.-H.; Veinot, A. J.; Zhou, W.; Häkkinen, H.; Nambo, M.; Crudden, C. M. Synthesis and Properties of an Au6 Cluster Supported by a Mixed N-Heterocyclic Carbene-Thiolate Ligand. Chem. Commun. 2020, 56 (45), 6102–6105.
  7. Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C. M. N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119 (8), 4986–5056.
  8. Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G.; Häkkinen, H.; Tsukuda, T.; Crudden, C. M. Robust, Highly Luminescent Au13 Superatoms Protected by N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2019, 141 (38), 14997–15002. 
  9. Roy, M. M. D.; Lummis, P. A.; Ferguson, M. J.; McDonald, R.; Rivard, E. Accessing Low-Valent Inorganic Cations by Using an Extremely Bulky N-Heterocyclic Carbene. Chem. Eur. J. 2017, 23 (47), 11249–11252.
Discover more at NCBI INFO
  • ACS Petroleum Research Fund "Stabilization and reactivity of neutral and cationic s-block metal hydride complexes"